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19. Abstract (cont‘’d)

Underlying our program in surface chemistry is a broad interest in the
properties of organic surfaces as components of materials. In particular, we
hope to develop the ability to rationalize and predict the macroscopic
properties of surfaces -- wetting, adhesion, friction -- by knowing their
microscopic, molecular-level structures. The issue of structure/property
relationships in solids lies at the base of much of the current research in
areas such as materials science, condensed matter and device physics, and
polymer physical chemistry. Surface science spans these fields, and is
currently a research area of particularly great activity. The appeal of
surface chemistry as an avenue into detailed understanding of the relations
between microscopic and macroscopic properties of matter is that interfaces are
more accessible to analysis and more easily modified by synthesis than are the
interiors of solids.

Organic chemistry has played a surprisingly small role in interfacial
science. Although organic chemistry offers, in principal, the ability to
introduce a wide range of functional and structural groups into surfaces, in
practice it has been difficult to, much less design and synthesize, ordered
two-dimensional arrays of organic moieties. We have taken a physical-organic
approach to the study of organic interfacial chemistry: we formulate a
hypothesis relating molecular-scale structure to macroscopic property,
synthesize and characterize interfaces having structures appropriate to testing

that hypothesis, measure the properties of interest, and interpret the
information concerning structure and properties in terms of the original

hypothesis. The physical-organic paradigm for the study of complex patterns of
structure and reactivity is fundamentally a qualitative one, often relying more
on analogy than on numerical calculations based on fundamental theory. It has,

" however, provided one of the most durable and useful methods of understanding

complicated systems. Physical-organic chemistry counts among its many
successes the correlation of organic structures with reactivities in solution,
the rationalization of areas such as photochemistry and catalysis, and the
inference of the properties and structures of reactive intermediates; we
believe it will also be immensely valuable in understanding surfaces.
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ORGANIC CHEMISTRY IN TWO
DIMENSIONS: SURFACE-FUNCTIONALIZED
POLYMERS AND SELF-ASSEMBLED
MONOLAYER FILMS'

George M. Whitesides and Gregory S. Ferguson,? Harvard University

Organic chemistry is largely derived from studies of the reactivity and prop-
erties of molecules in homogeneous solution, and much of the intuition of
organic chemists is based on the behavior of molecules in solution. Surfaces
and interfaces’ (that is. quasi two-dimensional assemblies of molecules or
functional groups) provide environments that can be quite different from those
of solutions. and chemical intuition derived from solution is often wrong wher
appiied to processes occurring at surfaces. The central focus of our program
in organic surface chemistry is on new science:. that is. understanding and
controlling the phenomena characteristic of surfaces. interfaces. and thin
films. A charm of surface chemistry is. however, its ability to combine new
science with relevance to a wide range of technological probiems.** and we
hope to contribute to these applied areas as well.®

Underlying our program in surface chemistry is a broad interest in the prop-
erties of organic surfaces as components of materials. In particular. we hope
to develop the ability to rationalize and predict the macroscopic properties
of surfaces—wetting, adhesion. friction—by knowing their microscopic, mo-
lecular-level structures. The issue of structure/property relationships in solids
lies at the base of much of the current research in areas such as materials
science, condensed matter and device physics, and polymer physical chem-
istry. Surface science spans these fields and is currently a research area of
particularly great activity.*’-% The appeal of surface chemistry as an avenue
into detailed understanding of the relations between microscopic and mac-
roscopic properties of matter is that interfaces are more accessible to analysis
and more easily modified by synthesis than are the interiors of solids.

Organic chemistry has played a surprisingly small role in interfacial science.?”
Although organic chemistry offers, in principal, ihe ability to introduce a wide
range of functional and structural groups into surfaces, in practice it has been
difficult to rationalize, much less design and synthesize, ordered two-dimen-
sional arrays of organic moieties.” We have taken a physicai-organic approach
to the study of organic interfacial chemistry: We formulate a hypothesis re-
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lating molecular-scale structure to macroscopic property, synthesize and char-
acterize interfaces having structures appropriate to testing that hypothesis,
measure the properties of interest, and interpret the information concerning
structure and properties in terms of the original hypothesis. The physicai-
organic paradigm for the study of complex patterns of structure and reactivity
is fundamentally a qualitative one, often relying more on analogy than on
numerical caiculations based on fundamental theory. It has, however, pro-
vided one of the most durable and useful methods of understanding compli-
‘cated systems. Physical-organic chemistry counts among its many successes
the correlation of organic structures with reactivities in solution, the ration-
alization of areas such as photochemistry and catalysis, and the inference of
the properties and structures of reactive intermediates;” we believe it will
also be immensely valuable in understanding surfaces.

SYNTHESIS OF SURFACES AND INTERFACES

We have relied on two separate types of experimental systems in our studies
(Scheme 1):

N
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S-R-X
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g - —_— R
9 R "

Si/ Si02 Ci3Si-R-X

Scheme 1. Schematic representation of the two methods used for production of functionalized surfaces. Left:
Spontaneous self-assembly of an oriented monolayer film by adsorption of organosutfur compounds on gold or !
alkyt trichiorosilanes on silicon/silicon dioxide. Right: Oxidative functionalization of polyethyiene films.

Self-Assembiy

H2CrO4
PE ——— "PE-COgH"

1) Plasma
PE ———» "PE-OH"

2) BH4"

1. Surface-Functionalized Organic Polymers, Especially “Polyethyiene Car-
boxylic Acid” (PE-CO,H). These systems are prepared by oxidizing poiy-
ethylene (PE) films with chromic acid and using the carboxylic acid groups
introduced onto the surface as the starting point for more elaborate chemical
modification (Scheme 1).%-* The chromic acid oxidation has the advantages
of restraining the functionality to a very thin (less than 10 A in depth) layer
along the surface contour of the polymer and of generating a set of func-
tionalities limited to carboxylic acids and ketones and/or aldehydes. PE-CO.H
is convenient to prepare and study and is an excellent material for exploratory
studies. It also provides an entry into the examination of properties repre-

172 SURFACE-FUNCTIONALIZED POLYMERS AND SELF-ASSEMBLED FILMS / CHEMTRACTS—ORGANIC CHEMISTRY




sentative of a “real” material. It is, however, a complex, microscopically
heterogeneous and structurally ill-defined material.”

2. Seif-Assembled Adsorbed Monolayer Films.®® We and others have fo-
cused on two classes of monolayers: organosulfur compounds (especially or-
ganic thiols) adsorbed on gold,**4-* and alkyl siloxane monolayers prepared
by reaction of alkyl trichlorosilanes with surfaces containing hydroxyl groups
| and/or adsorbed water. -2 Both of these systems, and others related to them,
' are excellent models for interpreting the characteristics of PE-CO,H and its
derivatives. Immersion of a silicon wafer coated with a thin film (~1000 A)
of evaporated gold in a solution of a fatty thiol for 1 hour at room temperature
results in the formation of a highly ordered, quasicrystalline monolayer of
fatty thiol attached to the gold surface by sulfur-goid coordination (Scheme
1). The essential processes occurring during the adsorption and organization
| of the thiol on the gold surface are still incompletely understood, but they
are certainly related to the familiar, if complex, coordination chemistry of
thiols and gold(0) or gold(I).**

One of the most attractive features of organic chemistry is the wide variation
in the structure of organic molecules that can be produced through synthesis.
A challenge to our program in organic surface chemistry has been to bring
these synthetic techniques to bear on two separate classes of problems in
surface chemistry: first, the introduction of small fragments having desired
functionality onto surfaces through chemical reaction; second. the prepara-
tion/assembly of these fragments in extended macroscopic arrays with control
over position and orientation. The two approaches we have followed—one
leading to PE-CO-.H and its derivatives, and the other to self-assembied
organic monolayers—are quite different. The former introduces functional
groups onto a preformed heterogeneous material (Scheme 2). This procedure
is convenient and experimentally relevant to a broad range of polymer tech- -
nologies, but it requires the study and analysis of materials that are-intrinsically
structurally ill-defined. The latter prepares well-defined. appropriately func-

PE-H
CrO4H,S0O,
LIAIH,
4 or
ROH BH4
PE-CO;R T PE-COH ———= PE-CH,OH
PClg 1 RCOC!
J
PE-COC! PE-CH,0COR
noy \RNH, o
PE-CO,R PE-CONHR
Scheme 2. Representative reaction sequences used to convert the surface !
of polyethylene film (PE-H) to “polyethylene carboxylic acid” (PE-CO;H) and u
derivatives. -
s —————— e
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3 tionalized molecules, which are then allowed to self-assemble on a reactive
\ surface and form highly ordered two-dimensional structures. Self-assembly
: will, we believe, become a mainstay of ordered monolayer formation,*S and
will eventually prove invaluable in rational strategies for modification of the
properties of interfaces. Preparing these systems is, however, experimentally
more complex than generating functionalized polymer surfaces.

CHARACTERIZATION OF SURFACES

We have used the usual array of spectroscopic techniques to characterize
surfaces: attenuated total reflectance-infrared (ATR-IR) and polarized in-
frared external reflective spectroscopy (PIERS), X-ray photoelectron spec-
troscopy (XPS), electron spin resonance (ESR), fluorescence, electron
microscopy, and ellipsometry are all useful (Table). We have, however, also

Table. Selected Msthods for Analysis of Surfaces and interfaces

Technique Appiication and Depth Sensed

Scanning tunneling microscopy (STM) individual atomic positions on surfaces

Low-angle X-ray scattering Electron density map of the surface of

very flat solids

Electron microscopy (SEM, TEM); Surface morphoiogy and degree of
electron diffraction cCrystaliine order

Contact angie (H,0) Poiarity of top ~10 A

X-ray photoelectron spectroscopy; Atomic and chemicai composition ot top
(XPS); auger spectroscopy ~50 A

Ellipsometry Determination of film thickness with a

resolution of 2 A
Attenuated total reflectance-infrared

Pc:l:;zne.::ai)nframd external reflective Vibrational analysis of top ~1000 A
spectroscopy (PIERS) .

Rutherford backscattering (RBS) Atomic composition as a function of
de?\th with resoiution of hundreds
of

Fluorescence spectroscopy Assay for density of functionality after
covalent attachment of fluorescent
probes

Electron spin resonance (ESR) Location and mobility of paramagnetic

spectroscopy centers (e.g., TMPO) in interfaces

been able to apply to problems in the physical-organic chemistry of surfaces
two techniques for characterization that are less familiar to the spectroscopic
community. The first is the measurement and interpretation of liquid-solid
contact angles. This technique has proven to be the most surface-sensitive
and most convenient (if not the most easily interpreted) method that we have
available to characterize organic interfaces.’-344! It is especially useful in
characterizing the solid-water interface. The second technique involves stud-
ies of chemical reactivity at interfaces. This approach is especially useful when
applied using simple, high-yield reactions that are well understood in ho-
mogeneous, liquid phase chemistry. Ionization and esterification of carboxylic
acids and saponification of carboxylic acid esters are especially diagnostic.®

The con_\bination of measurement of contact angle with studies of ionization
of functional groups has resulted in a technique we call “contact angle titra-
tion™:-that is, study of the variation in the contact angle with the pH of the
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aqueous drop (Scheme 3). This technique increases the information derived
from the measurement of contact angles. Traditional approaches to studying
contact angle generate only two numbers (the advancing contact angle 8, and
the receding contact angle 8,).% Receding contact angles are presently very
difficult to interpret. Efforts to characterize complex, heterogeneous interfaces
using only advancing contact angles are unlikely to be very broadly useful.
By measuring contact angle as a function of pH, however, one can often infer
the existence, environment, and nature of ionizable groups present at the
interface.

Contact angle titration is based on the observation of variations in contact
angle with pH at surfaces containing ionizable groups.* This variation plau-

120 |

byt s PEH
90 | s svssngaSgigsts PE-COOCHy

- ~4—A—4&——~A—a—4A- PE-CH,OH

60 - 2
30
eq : PE-COOCH
O | | L L
120

Jo—-ooo90-80—0— PE-CONHD
10—0-0—0—0~0—0-0—00—0—0<0—0~ PE-H

90 4oocoonoooooooos PEI'COOCH3

2 oy A PE-CH,OH
60 ] 9 4 PE~CONHCH;CH,NJ
- 0 N~ PE[>C=QJ[CH;NH,]
30 A
- / PE-COOH

| ASSORTED BUFFERS

Scheme 3. Dependence of 8, on pH for surface-functionalized polyethylene film. Top: Using unbuffered aqueous
solutions. Buffers: ((J) 0.1 M phosphate buffer; (O) all others (0.05 M), pH 1, 0.1 N HCI; pH 2, maleic acid; pH 3,
tartaric acid; pH 4, succinic acid; pH 5, acetic acid; pH 6, maleic acid; pH 7 and 8, HEPES; pH 9 and 10, CHES,
pH 11, triethylamine; pH 12, phosphate; pH 13, 0.1 N NaOH. The crosshatched and labeled “assorted buffers”
at pH 8 include data for phosphates MOPS, HEPES, TAPS, TRIS, and triethanolamine.
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sibly reflects ionization of the functional group: The charged form of an acid
or base is more hydrophilic than the uncharged form, and the contact angle
with water is lower. Although this simple explanation is fundamentally cor-
rect, and the technique is a very useful ow.e in comparirg acidities, its simplicity
hides a number of compliexities.

One interesting aspect of contact angle titration concerns the intuitive concept
of the ‘“‘quantity” of a functional group present at an interface. Our initial
intuition concerning surface functional group chemistry was that, in most
systems likely to be studied experimentally, the number of functional groups
present on a representative area of surface would be small compared with
the quantity of a reagent present in the volume of solution used in expefiments
on that surface. This belief is largely incorrect for measurements of contact
angles: The number of functional groups present at high density on a surface
is comparable to that present in solutions used for contact angle titration in
unbuffered systems. The difference between the titration curves obtained using
buffered and unbuffered solutions (Scheme 3) exemplifies the phenomenon.®

Explanation of this observation helps to clarify the concept of ““concentration™
in a heterogeneous system consisting of a surface and a contacting liquid
phase. We consider the spreading of an aqueous drop at an interface to be
determined in part by the extent of ionization of the functionality present at
that interface. Let us examine the ‘‘concentration” of this functionality in a
system consisting of a 1-ul drop in contact with a derivatized polyethylene
surface (a 1-pl drop typically covers an area of ~1 mm?). The density of
functional groups on the surface can be in the order of 6 x 10%/cm® for a
surface with typical roughness;® at this density, the concentration of reagent
in solution in the contacting drop required to react stoichiometrically with
that functionality is ~0.1 mM.%” For an unbuffered aqueous solution and a
monoprotic acid/base reaction. a concentration of acid or base > 0.1 mM
(i.e., pH < 4 or pH > 10) is thus required to achieve a stoichiometric reaction.
Clearly, the difference in contact angle titration curves obtained using buffered
and unbuffered solutions is due to surface functionality that is itself sufficiently
concentrated in the system comprising surface and drop to buffer the pH of
the aqueous solution in the range pH 5-9. Thus. the qualitative idea that a
monolayer of organic functionality is insignificantly small in quantity com-
pared with the functionality present in solution is incorrect, if one is concerned
with small volumes of solution.

A second interesting issue concerns the detailed interpretation of the contact
angle titration curves. In particular, we ask how shouid the solid-liquid in-
terfacial free energy vy, be related to the functional groups present on the
surface? The fundamental relation connecting the contact angie to ipterfacial
free energy terms is Young's equation (Eq. 1).%

Ysv — Vst (1)
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For aqueous solutions constituted with appropriate buffers, the liquid-vapor
interfacial free energy v,y is the same as that for pure water. Variations in
interfacial free energies are thus related to the observed vaiue of 8 primarily
by the terms yg and ys;. These terms, in turn, depend on a number of factors:
the type, density, and distribution of functional groups present at the solid-
vapor (liquid) interface; their extent of ionization; the roughness of the sur-
face; the relative humidity of the vapor.

As a first approximation, we have proposed that the interfacial free energy
can be expressed as a linear combination of functional group contributions,
multiplied by the normalized fraction B; of these groups on the surface™*
(Eq. 2). The parameters v, 5, and v, s reflect intrinsic

Ys. = Z Bi vise (2a)

Ysv = 2 Br Yisv (2b)

hydrophilicity and group size or area. Comparisons of infrared spectroscopic
data with contact angles indicate that this type of analysis is approximately

o @]
o \ o
o |
o)
L % A 02
o el
a%scs 8=t 1S e
- (g PR
S

Figure. Schematic representation of an ideal (top /eft) and real (fop right, bottom) drop of liquid (L) in contact
with a solid (S) and vapor (V) with contact angle 8. The symbois in the upper right picture represent (O) water
molecules, (A) dissolved solutes (phosphate, buffer salts), (©, @) polar surface groups (CO.H, CO;, C=0,...),
() nonpotar surface groups (CH,, CH,,...). A lip of liquid (bottom; not drawn to scale), the “precursor film,” !
extends microns beyond the edge of the drop in certain circumstances. =

MAY/JUNE 1988 / SURPFACE-FUNCTIONALIZED POLYMERS AND SELF-ASSEMBLED FILMS 17

e R




correct for PE-CO,H and some of its acidic derivatives,® but that interactions
between groups, and perhaps interfacial heterogeneity, make the problem
more complex than can be described completely using this simple approach.
An understanding of these interactions and compiexities remains to be es-
tablished.

A third important issue is the meaning of hysteresis in the measurement of
contact angles. For derivatives of PE-CO,H, 6, appears to provide a simple,
semiquantitatively interpretable measure of interfacial group character and
density. Contact angles are, however, a simple parameter derived from ob-
servations of a complex reality (Figure). Advancing and receding contact
angles differ on many surfaces, and all the derivatives of PE-CO,H (partic-
ularly polar derivatives) display very large hystereses in their contact angies:
8, is frequently O even for systems having fairly large values of 6,. Large
hysteresis is usually interpreted to indicate a heterogeneous system far from
thermodynamic equilibrium.® Yet analyses of 8, based on Young’s equation,
an equation assuming thermodynamic equilibrium, seem to give interpretable
and reasonable results. It is not clear how one should treat a system that is
not at thermodynamic equilibrium. but for which physical measurements cor-
relate with thosc expected based on physical-organic analogies to processes
occurring at equilibrium in solution.

RESULTS

Both functionalized polyethylene and its derivatives. and self-assembled mon-
olayer films, provide systems with which to examine reactions occurring at
interfaces and to test hypotheses concerning structure/reactivity and struc-
ture/property relationships. In so doing. we find that many of the results we
obtain can be rationalized by analogy to phenomena in solution (often with
characteristic differences that can be interpreted to compare and contrast the
environments provided by homogeneous solutions and interfaces). We also
frequently encounter unexpected phenomena, which suggest that any models
of organi< reactivity at interfaces. based exclusively on analogies with solution.
are not complete. The studies that follow provide examples.

Surface Acidities. Scheme 3 indicates that carboxylic acids and many. but
not all, amines show inflections in plots of 8, vs the pH of the drop used in
measuring the contact angle.’>* Assuming that the midpoint of the inflection
corresponds to half-ionization of the functional group (an assumption sup-
ported by independent ATR-IR measurements on carboxylic acid surfaces),
we infer that acidities of functionai groups at an interface and in solution are
very different. For example, the value of pH for a solution in contact with a
surface required to achieve half-ionization of the carboxylic acid groups at
that surface can be as high as 12. What is the origin of this very large apparent
decrease in acidity of carboxylic acids (and corresponding increase in the
apparent acidity of ammonium ions)? We believe that the origin of these shifts
can ulitimately be attributed to the locally low dielectric constant at the poly-
ethylene-water interface, 2334 byt rationalization of these anomalous values
of pK, is not yet complete.

Relations between Functional Group Hydrophilicity and Wettability of In-
terfaces. We assumed at the outset of our studies that more hydrophilic
interfacial groups (as measured by some convenient parameter such as the
Hansch w parameter®') would lead to more wettable surfaces. In fact. ex-
perimental observations relating wettability to functional group hydrophilicity
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differ significantly from those expected (Scheme 4). As the value of 7 for the
functional group on the surface decreases. 8, also decreases, but only up to
a point. Beyond that point, further increases in functional group hydrophilicity
result in no further increase in wettability: that is, the hydrophilicity of the
surface ‘“‘saturates.”” We postulate that the origin of this effect lies in con-
densation of water vapor at polar solid-vapor interfaces (Scheme 5. Nonpolar
interfaces condense relatively little water. All of our experiments invoiving
contact angles with water are carried out at 100% relative humidity in order
to assure that the system is as close to thermodynamic equilibrium as possible.
Polar functional groups at interfaces are undoubtedly associated with hy-
drating water adsorbed from the vapor phase. We postulate that. beyond a
certain value of the Hansch = parameter, the polar surface functional groups
become completely surrounded by condensed, hvdrating water, producing a
solid-vapor interface whose polarity is essentially independent of the under-
lying functional group. Under these circumstances. the wettability of the
surface is determined primarily by the area fraction of the surface converted
to polar functionality, and then hydrated by condensed water.

160 //“7 ~CeHy2

Il
i LN ~CH,0CC1F1s Ve
' CONHC3H; o=\

Scheme 4. Contact angles of water for derivatives of PE-CO,H, PE-R, with
arange of hydrophilicities of the troup A.  is the Hansch parameter, a measure
of functional group hydrophilicity, derived from the equilibrium constant for
partioning between aqueous and hydrocarbon phases (inset).

e — —

These observations and interpretations imply the existence of a thin. con-
densed water film on polar surfaces. The nature of this film, and especially
the relation of its structure to that of bulk water, remains an important and
complex problem.

The Range of Interactions Determining Wetting. Scheme 4 displays an aston-
ishing observation: Although a surface incorporating amides (PE-CONH,) is
relatively hvdrophilic, the analogous primary amide PE-CONHC;H, is more
hydrophobic than unfunctionalized polyethylene. Some of the apparent hy-
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OH;

H,0

.

Scheme 5. Schematic illustration of the degree of hydration of a functional
group 7 at the solid—vapor interface. When P is nonpolar, the equilibrium lies
to the left; when P is polar, it lies to the right.

drophobicity of PE-CONHC;H, and its analogs undoubtedly reflects the mi-
croscopic roughness of the surface of these materials (generated during the
oxidative surface functionalization). Nonetheless, we find that it takes oniy
a small hydrophilic or hydrophobic group to determine the wettability of a
surface. Furthermore, a small hydrophobic group is capable of completely
masking an underlying, intrinsically hydrophilic core functionality. Thus. for
example, replacement of a terminal CH; group in one of the well-defined.
self-assembled monolayer systems by a CH,OH group changes the monolayer
from being very hydrophobic to very hydrophilic.* and reacylation of the
terminal hydroxyl (CH,OCOR) once again makes it very hydrophobic. The
interactions that determine macroscopic wettability are. apparently, very short
in range.!® We believe, in fact, that measurement of contact angle is the most
surface-sensitive technique presently available for examining the sclid-liquid
interface. The great advantages of wetting ‘as a-probe of surface structure
(relative, for example, to XPS) are that its measurement is very simple,
convenient, and inexpensive, and that it is intrinsically applicable to the solid-
liquid interface and to heterogeneous, noncrystalline surfaces. Its disadvan-
tages are that contact angle measurements are information poor, that they
require a liquid-solid interface, and that their physical basis is complex and
still incompletely understood.

Designed Interfaces. The materials PE-CO-X are convenieat but heteroge-
neous. The best characterized and structurally best defined organic interfaces
now available are those formed by adsorbing long-chain alkyl thiols on gold,
or by allowing long-chain alky! trichlorosilanes to react with surface hydroxyl
groups and adsorbed water present on the surface of glass or silica. Both of
these systems have the alkyl groups in completely trans-extended confor-
mations, provided that the terminal functional group is relatively small. For
organic thiols on gold, the chains are tilted ~30° from the normal to the metal
surface;*** for alkyl siloxanes on silicon/silicon dioxide, they are approxi-
mately perpendicular to the substrate surface (Scheme 6).* Transmission
electron microscopy indicates that the thiol/goid system has at least micro-
crystralline order in -he plane of the monolayer.“

These ordered monolayer systems permit an exquisite degree of controi over
structure and dimensionality at the interface. As one example, consider a
monolayer formed by adsorption of HS(CH,),;OH on goid. Formation of
such a monolayer is experimentally very straightforward: one simply dips the
gold-coated substrate into a solution of the a,w-thioalcohol in a solvent such
as acetonitrile for 1 hour at room temperature, withdraws it. and washes it
briefly. At the conclusion of this procedure, the entire accessibie surface of
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Scheme 6. Schematic illustration of conformation and packing order in mon-
olayers of organic thiols on goid and alky! siloxanes on silicon/silicon dioxide.
The monolayer is composed of three important regions: the head groups
{portion binding to solid substrate), the polymethyiene chains (for formation of
van der Waals surface), and the tail groups (terminal functionality that deter-
mines the character of the solid-iiquid and solid—vapor interfaces).
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Scheme 7. Stylized illustrations of monolayer structures.® Proposed structures of (A) pure monolayer of
HS(CH,),,OH; (B) monolayer composed of 50% HS(CH,),,OH and 50% HS(CH,)},,OH; (C) pure monolayer of
HS(CH,),,OH. Structures we believe do not occur in the systems studied here: (D) disordered monolayer and (E)
monolayer containing a mixture of components and showing phase separation into islands.
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the gold is covered with a uniform monolayer 23 A thick, and the exposed
surface is a densely packed monolayer of hydroxyl groups. The thickness of
the monolayer is easily controlled at the scale of angstroms by varying the
: number of methylene groups in the thiol chain; the surface properties are
independently controllable through variations in the terminal functional
group. If mixtures of two different terminally functionalized thiols are used,

monolayers can be made having the two mixed on the surface (Scheme 7).

CURRENT PROBLEMS

The physical~organic chemistry of surfaces promises to provide new materials
based on rational synthetic modification of surfaces and interfaces, new an-
alytical methods with which to characterize surfaces, and deeper levels of
understanding of familiar processes such as dissolution, wetting, adsorption,
and adhesion occurring at interfaces and in solutions. The phenomena being
observed are, however, usually more complex than those occurring in ho-
mogeneous solution, and are, consequently, still incompletely understood at
even the simplest levels. The field presents a number of fascinating funda-
mental problems in interfacial chemistry, among which we place the following:

1. Molecular-Level Order. How should the order in these systems be de-
fined and measured? One advantage of a two-dimensional system is that
it is, in principle, less complex structurally than a three-dimensional
system: The components of a two-dimensional system are by definition
restricted to a plane rather than free to translate and rotate in three
dimensions. In practice, however, the probiem of defining order in
surface-functionalized polymers and self-assembied monolayers remains
very complex. All of these systems are, in reality, only quasi two-di-
mensional. Materials such as functionalized polyethylene are obviously
microscopically rough and heterogeneous and have functionality dis-
tributed nonuniformiy in a thin interfacial layer. Contact of these
systems with a liquid phase may result in interfacial swelling and
reconstruction. Self-assembled monolayers are better defined structur-
ally, but even with these systems, subtie issues of order in the plane of
the monolayer, at the gold-monolayer and monolayer-~liquid interfaces
and between adjacent organic molecules require the development of
new analytical techniques and new criteria for order.

2. Kinetics vs Thermodynamics. The extent to which any of the systems
currently studied are at thermodynamic equilibrium, and the influence
of departures from equilibrium on their behavior, is almost completely
uncertain at present.

3. Wetting. Despite interesting and provocative theoretical contributions
to the theory of wetting in certain idealized systems,’®-™ there is no
usefuily detailed theory of wetting relevant to real, microscopically het-
erogeneous surfaces. The current rationalization of hysteresis in the
measurement of contact angles is especially unsatisfactory. Detailed
examination of hysteresis, both theoretically and experimentally would
be particularly useful, because hysteresis appears to be very sensitive
to order; an understanding of the relation between interfacial structure
and hysteresis might provide a new avenue of approach to this important
subject.

4. Molecular Design of Monolayers. Essentially all work so far carried
out with self-assembled monolayers has focused on derivatives of fatty
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acids. These systems have the two virtues that they are easy to manip-
ulate syntheticaily and that they do, for whatever reason, form well-
ordered monolayers. They are, however, not stable at even modestly
elevated temperatures and have no strong intermolecular interactions
contributing to order in the plane of the monolayer or to thermal or
oxidative stability. It is important to develop molecular structures other
than fatty acids that form ordered, stable two-dimensional sheet struc-
tures.

CONCLUSIONS

Organic chemistry at interfaces is a field offering major opportunities for both
the conduct of basic science and the development of new technology. It also
provides, through the synthesis of extended functionalized interfaces, a bridge
between the science of isolated molecules and the science and technology of
materials. Since chemical reactivity and wettability provide what we believe
will prove to be invaluable probes of interfacial structure for organic systems.
these systems are particularly attractive for studies aimed at understanding
the characteristics of solid-liquid interfaces.

Surface-functionalized polymers (of which the best developed is PE-CO,H)
are proving to be convenient systems with which to conduct exploratory work.
They are easily prepared and manipulated. and because they present solid-
vapor interfaces that have low surface free energies. they are relatively re-
sistant to contamination by atmospheric contaminants. Further. since they
are physically robust, surface-modified polymers can be used to examine
complex materials problems such as biocompatibility,”® adhesion.? gas per-
meation.® friction.” and the influence of bending. stretching,* and surface
reconstruction® on interfacial properties.

Self-assembled monolayers will, we believe, prove to be the ultimate cor-
nerstone of the basic science in organic surface chemistry. They will certainly
also find technological application in areas such as promotion of adhesion.
inhibition of corrosion, and control of friction. and they may prove important
in the production of sensors and microelectronic devices. The remarkable
ease with which very compiex monolayer structures can be assembied from
molecules of very modest complexity will be invaluable in studying the prop-
erties of organized molecular assemblies. The best defined of these systems
is presently obtained by adsorption of w-functionalized fatty thiols on gold.
although organosilicon compounds on silicon dioxide and glass may uitimately
prove equaily ordered. Alkyl thiols on gold have as their major advantage
the compatibility of the thiol moiety with a wide range of organic functional
groups, and the fact that these systems iead to highly ordered monolayers.
Silanes on silica are more economical. better adapted to the formation of
multilayer structures, and more robust structuraily. .

Given the astonishing sensitivity of wettability to local surface structure. its
study should provide a range of important new types of information about
interfaces, especially solid-liquid interfaces. Designing and interpreting these
experiments will require a physical-organic approach~~the systems being
studied are too complex to be defined using conventional, spectroscopy-based
physical chemistry. Because wetting is directly relevant to a broad range of
technological problems, these studies should be exceptionally vaiuable in
applications. The experimental techniques required to study wetting are very
simple. Surface science based on studies of wettability should thus be acces-
sible even to those without routine access to the instrumentation of high-
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vacuum physics. A more realistic theoretical basis for wetting is desperately
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